一个好的围棋 AI,需要算法、工程实现、计算资源三者结合。目前围棋 AI 已经有了优秀的公开算法,但同时拥有良好工程实现和大量计算资源,并不是一件容易的事。
为了让行业内其他研究者可以在此基础上继续探索围棋 AI 的奥秘,帮助棋手更方便地研究围棋 AI 的棋路,也为了众多围棋爱好者在家用普通电脑上可以享受和职业九段交锋的乐趣,微信团队决定对外开源 PhoenixGo 对弈源码和训练模型。
经过了一周多时间的筹备,PhoenixGo 目前正式开源了对弈源码和一个 20 block 的模型。这份源码和模型可以在单块 GPU 上提供强职业棋手的棋力,在单机多卡和多机多卡的系统上具有远超人类棋手的水平。PhoenixGo 在野狐围棋平台上的账号「金毛测试」,运行于 1 块性能与 GTX 1080 Ti 性能接近的 Tesla P40 上,对人类棋手具有非常高的胜率。
腾讯微信团队表示,希望 PhoenixGo 的开源能为 AI 领域发展再添助力。
GitHub 地址:https://github.com/Tencent/PhoenixGo
PhoenixGo是一个围棋AI程序,它执行AlphaGo Zero论文“掌握无人知识的Go游戏”。它也被称为FoxGo中的“BensonDarr”,CGOS中的“cronus”。在中国福州举办的“World AI Go Tournament 2018”中,来自微信团队的人工智能围棋程序PhoenixGo获得了冠军。
如果您在项目中使用PhoenixGo,请在您的自述文件中提及。
如果您在研究中使用PhoenixGo,请考虑引用库:
@misc{PhoenixGo2018, author = {Qinsong Zeng and Jianchang Zhang and Zhanpeng Zeng and Yongsheng Li and Ming Chen and Sifan Liu} title = {PhoenixGo}, year = {2018}, journal = {GitHub repository}, howpublished = {\url{https://github.com/Tencent/PhoenixGo}}}建立和运行